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Effect of Density Gradients in Confined Supersonic

Shear Layers. Part II. 3-D Modes

© ,_oo _,'_

The effect of basic flow density gradients on the supersonic wall modes were

/

investigated in Part I of this analysis. In that investigation only the 2-D modes

were studied. Tam and Hu investigated the 3-D modes in a confined vortex

sheet and reported that the first 2-D Class A mode (A01) had the highest

growth rate compared to all other 2-D and 3-D modes present in the vortex r.4

sheet for that particular set of flow parameters. They also showed that this _l -
U

O_ t-
Z

result also held true for finite thickness shear layers with _ < 0.125. For free

shear layers, Sandham and Reynolds showed that the 3-D K-H mode became

the dominant mode for Mc > 0.6. Jackson and Grosch investigated the effect _

_ t,,.)

of crossflow and obliqueness on the slow and fast modes present in a Mc > 1 u_ z t_OQO
_O

u. e¢' _r

environment and showed that for certain combination of crossttow and wave o ,,,

t.l _") r'_

angles the growth rates could be increased by up a factor of" 2 with respect u. a .. m

to the 2-D case. Two major differences between the confined and unconfined ^z_JU"
0 _.,-

cases are the type of modes present in the two cases and the restriction on the cc z m

spanwise wavenumber in the confined case. The modes present in a confined _ _" "_ "
I tu _-

supersonic 2-D shear layer are of the acoustic type (wall modes) as opposed to ,t ,_ _
Z _." _I_ _J

the vorticity modes present in the free shear layer, and these wall modes have

or

Or
t_

higher growth rates than the vorticity modes. Also, due to the side walls, the



confined shear layer only has discrete spanwise wavenumber solutions.

The case studied here is a confined shear layer shown in Part I. All solution

procedures and basic flow profiles are the same as in Part I. The effect of density

gradients on the 3-D modes present in the density ratios considered in Part I

are investigated.

II. Flow Model and Governing Equations

As in Part I, the model which is studied here is a confined compressible

shear layer formed by two gases with different velocities, densities and prop-

erties, but with the same constant pressure. Figure 1 shows the configuration

used in this analysis. The subscript 1 is used for the quantities related to the

high speed freestream and the subscript 2 for the quantities of the low speed

freestream. The streamwise coordinate is x, the spanwise coordinate is z, and

the cross-stream coordinate is y. The aspect ratio of the channel is taken to

be 2 (B* = 2H*). For simplicity, free slip wall boundary conditions are as-

sumed at the walls of the channel. It is also assumed that the flow is inviscid,

non-conducting, and non-diffusive. For this situation the governing equations

are the Euler equations for a two species system.

The equations are non-dimensionalized using the fast (upper) freestream



quantities, p*, U_*, T* and the height of the channel, H*. Thermodynamic

properties are also non-dimensionalized by the upper freestream thermody-

namic properties, c* and Ra. Based on this non-dimensionalization, the den-Pa

* U,*

sity ratio _ and the velocity ratio _7_ are defined as p2 and U_, respectively.

Once the equations are non-dimensionalized, they are linearized around a par-

allel basic flow (_(y), P, U(y), Ca(y)). These basic flow quantities can be found

by solving the compressible boundary layer equations using a similarity vari-

able for Pr = Sc = Le -= 1. This procedure was discussed in Part I.

Normal modes are assumed for these infinitesimal disturbances with the

form:

!
q = (t(Y) exp[i(kx +/3z - wt)] (2.1)

where _ is the eigenfunction, k and/3 are the streamwise and spanwise wave

numbers and w is the frequency. In general k,/3 and w are complex. Once these

normal modes are substituted into the equations of motion, a single O.D.E.

can be found for the disturbance pressure eigenfunction:

2kD(]
D2[_

f
+ }D_}Di)+ { P'Y1M_ (z - kO)2 - k2 - /32}_ = O-_ (2.2)
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where

d
D_

dy

= co.Ca + c_(1 - Ca)

and M1 and 71 are, respectively, the Mach number and the ratio of specific

heats of the high speed freestream.

The above equation is solved subject to the boundary conditions

+1 (2.3a)
Di5 = 0 Y = 2

D/3 -- 0 z - =kl (2.3b)

which come from the y and z-momentum equations by setting the normal ve-

locity at the walls to zero. It is the latter boundary condition that leads to a

discrete spectrum of spanwise wavenumbers. Therefore the spanwise wavenum-

ber becomes:

g----mr (2.4)
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for an aspect ratio of two, and the disturbance pressure takes the form:

p'(x,y,z, t) = _(y)cos(re.z)exp[i(k_- _t)] (2.5)

Outside the shear layer the vortex sheet solutions hold. They can be written

as:

[_(y) = Acos[)q(1- y)] _ < y < 1 (2.6a)

[9(y) "- B cos[_2(1 "4"y)] - 5 > y > -1 (2.6b)

where

_1= [MY(_- kU,)2 - k2- (m_)21½

[a*\2

_== [My_) (_ - kV2)2 - k2_ (m_)21:

(2.7a)

(2.7b)

Following Mack, we define a 3-D wave number as:

/¢ = (k2 + (mTr)2) ½ (2.8)

one can also define a complex convective Mach number, S/Ic(y) as:
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/_'r,M_ (w - kb') 2 (2.9)

therefore equation (2.2) can be written as:

=0 (2.1o)

This form of the O.D.E. for the disturbance pressure eigenfunction clearly

shows the role of the parameter 2_/c and its significance in the type of solutions

possible. Now, outside the shear layer for a neutral wave this convective Mach

number is a constant real value, i.e. (/_/cl -- Mcl,_/Ic2 -- Mc2),

(2.ila)

and

al
Mc2 = M1 cos_b(U2 - Cphx) (2.11b)

where Cph x -- w-- _, and ¢ is the wave angle. As shown for the 2-D case,

when Me2 > 1 non-inflectional neutral solutions of the type Cphx = 1 are

possible and when Mcl > 1 then non-inflectional neutral solutions of the type

Cphx = U2 are possible.
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Based on the above definitions and the results obtained in Part I, the

following cases are investigated:

CaseI : p_ = 1.398 m = 1

CaseII : p2 - 1.398 m -- 3

CaseIII : p: "" 3.060 m=l

CaseIV : p2 -- 3.000 m = 3

In all the cases, the fast stream gas is He and the slow stream gas is N2.

Also, the convective Mach number is 1.836, and the velocity ratio is 0.276.

Results and discussion

Case I

As shown in Part I, the basic flow profiles have three generalized inflection

points giving rise to three separate types of modes. These modes are all

7



supersonic wall modes and the necessary condition for their existence is a

trapped region of supersonic flow with respect to their phase speeds. In order

to use this condition, the maximum convective Mach number in the channel,

[Mc(u)[max, is plotted in the frequency and real wavenumber plane. Figure 2

shows the contours of this maximum convective Mach number. The dashed

lines correspond to [-_lc(y)[max < 1. Any modes which are present within

the 'wedge' ([Mc(y)lmaz = 1) are subsonic with respect to both streams and

therefore are not acoustic in nature. Figure 3 shows the real wavenumber vs.

frequency of all the modes present when the spanwise wavenumber is fixed to

= 7r. The fine dashed line in the form of a wedge is the []_c(Y)lmax = 1

line. Two modes originate in that wedge and are subsonic with respect to

both streams until they exit the wedge. Figure 4 shows the phase speed of the

modes present for this case. Several differences arise when we compare Figure

4 to Figure 6 in Part I. First, we now have a mode present in the limit as

the frequency goes to zero. This mode is originally subsonic, and as it turns

supersonic with respect to the fast stream it is very much like the combination

of the first three 2-D Class B modes (upper portion of the phase speed curves

in Figure 6 in Part I). This mode will be called the Dll mode. The first Class

C mode ell also starts from within the wedge described above, but its phase

speed exits the wedge very quickly and only slightly changes the characteristics
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of the mode. The rest of the Class A, B and C modes are all entirely acoustic

modes and their phase speeds are similar to those in the 2-D case. One must

note that the first two Class A and C modes are different in the sense that

each has 'picked up' the other's phase speed curv_. Figures 5a,b,c and d show

the growth rate of the Class A,B,C and D modes respectively. The growth

rate curve for the A12 mode has only one peak and its maximum growth rate

is a few percent higher than than that of the 2-D mode. The growth rate curve

for the A13 mode is almost identical to its 2-D counterpart despite the fact

that the wave angle at the maximum growth rate of for this mode is about 30

degrees. Mode All has very small growth rates (as do modes Bll, B12, B13)

and is not shown. Since the Class A and C modes have switched portions of

their phase speed curves with one-another, one must also discuss the growth

rates of the Class C modes with conjunction to the Class A modes. Instead

of identifying the 2-D and 3-D counterparts of each growth rate peak, one can

make a general statement that except for the A12, in the region where the

waves are 3-D, the growth rates are lower than those found for the 2-D case.

In fact mode Cll has a growth rate which is about 25% lower than its 2-D

counterpart. The growth rate curves of the class B modes are very much like

the 2-D modes. The Dll mode present for this spanwise wave number has

one subsonic growth rate peak and three supersonic peaks. The supersonic
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portion of the phase speed curve for this mode is very much like the curve for

the BO1 mode for a density ratio of about 1.65 where the first three Class B

modes have undergone a resonant interaction. In general, if one plots all the

growth rates of the 2-D and 3-D modes (8 = 7r), olae will find that the CO1 has

the highest growth rate.

Case II

In this case, the density ratio is the same as above, but the spanwise

wavenumber is now equal to 3zr. Figure 6 shows the maximum convective

Mach number contours. The wedge corresponding to the Iff¢c(y)lmaz - 1

contour is much larger than that in Case I. This implies that the region over

which purely subsonic modes can exists is much greater. Figure 7 shows the

real wavenumbers of the modes present when the spanwise wave number is

set to 3zr. Now both modes which start within the subsonic wedge have zero

frequency limits and both will be labeled as Class D modes. Figure 8 shows

the phase speed of the modes for this case. There are Class A,B and C modes

with very small growth rates within this frequency region and are not shown.

Figure 9a shows the growth rates for some of the Class A and B modes and

Figure 9b for the Class D modes. Very much like Case I, it can be concluded

that the 3-D modes have lower growth rates than the 2-D modes. Therefore
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for the test case parameters the 2-D, the C01 mode has the highest growth

rate. Tam and Hu also found similar results for their A01 mode.

Case III

t

This case corresponds to a density ratio of 3.0 for which the basic flow

profilesonly have one generalized inflectionpoint. Thus, as shown in Part I,

only Class A and B modes are present in the 2-D analysis. Figure 10 shows

the real wavenumber for the modes present. Only one mode exist in the

subsonic wedge and is present in the zero frequency limit. The phase speed

vs. frequency is given in Figure 11 and Figures 12a and b show the growth

rates of the Class A modes and the DI1 mode respectively. The 3-D Class

A modes for this case have smaller growth rates than their 2-D counterparts.

Very much likeCase I,the Dli modes' supersonic continuation isvery similar

to the B01 mode present for these parameters. Figure 13 shows the growth

rates of both modes on the same graph. It can be seen from this figure that

the maximum growth rate peak for the 3-D mode is slightlyhigher than the

2-D mode. More about the growth rate of this mode willbe said in the next

section.

Note that the Class B modes were not shown due to fact that they possess

very small growth rates.
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Case IV

The parameters for this case are the same as in Case III, however the span-

wise wavenumber is increased to 3r. Figures 14 and 15 show the wavenumber

and phase speed of the modes present. Again, like Case II the sonic wedge is

much greater than for the smaller wavenumber (Case III). Figure 16 and 17

show the growth rates of the Class A and the Dll modes. The Class A modes

have much lower growth rates than their 2-D counterparts. However, the Dll

mode a higher growth rate (by 5 %) than the B01 mode. Also, the frequency

for the maximum growth rate has shifted to the left. In order to investigate

this effect further, the mode Dll for _ - 51r is calculated and its growth rate

along with the Dll modes for t3 ---- 1r and 3zr and the B01 modes are plotted in

Figure 18. It is clear from this figure that the rise in the growth rate due to the

larger growth rates in the subsonic regions of these modes eventually stops and

actually the growth rates start to decrease beyond a spanwise wavenumber of

57r.

Based on all the results shown for all the cases considered, one can conclude

that 3-D effects are not that important in the sense that they don't give rise

to much larger growth rates as is the case in free shear layer. However, they

do give rise to modes which have almost the same phase speeds and growth

12



rates as the 2-D modes which can give rise to non-linear resonant interaction

in the evolution of the full 3-D shear layer.
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